Sommario
Chi ha inventato l asintoto?
Chi ha inventato l asintoto? 1. Nella geometria dei Greci già si conosceva qualche caso di asintoto. Euclide tratta soltanto di quelli dell’iperbole e ne dà alcune proprietà; ma chi approfondì meglio quest’argomento fu Apollonio.
Perché si chiamano asintoti?
Concetto di asintoto Asintoto e’ una parola che deriva dal greco: a privativo che significa no e sympìptein che significa congiungere cioe’ significa che non tocca, in pratica si tratta di una retta che si avvicina alla funzione senza mai toccarla, per questo si dice anche che l’asintoto e’ la tangente all’infinito …
Che cos’è un asintoto obliquo?
Un asintoto obliquo è una retta che approssima l’andamento del grafico di una funzione all’infinito, vale a dire ad uno dei due estremi illimitati del dominio o a entrambi gli estremi infiniti.
Come capire se una funzione ha asintoti?
Un asintoto è orizzontale in una funzione quando ha per ingresso del limite un valore infinito e per uscita un valore finito. Ad esempio, limite per x che tende a infinito di f (x) = 3. Questo è un asintoto orizzontale. Ricordatevi inoltre, che gli asintoti orizzontali non posso coesistere con quelli obliqui.
Come si fa a capire se c’è un asintoto obliquo?
Se quanto abbiamo detto vale solo per x → − ∞ x \to – \infty x→−∞ si parla di asintoto obliquo sinistro, se invece vale solo per x → + ∞ x \to + \infty x→+∞ si parla di asintoto obliquo destro.
Quando si ha un asintoto orizzontale?
Asintoto orizzontale Si ha un asintoto orizzontale quando, al crescere della x la y si avvicina ad un valore ben determinato. Infatti numeratore e denominatore hanno lo stesso grado ed il rapporto fra le x di grado maggiore e’ 3.
Quando una funzione ha un asintoto verticale?
La retta x=a è un asintoto verticale per la funzione f(x) se almeno uno dei limiti destro o sinistro per x che tende ad a è divergente (fa più o meno infinito). I punti “candidati” a ospitare asintoti verticali sono quelli che non appartengono al dominio (buchi o estremi).
Quanti asintoti può avere una funzione?
Una funzione può avere un asintoto obliquo solo se è definita in un intervallo illimitato e quando non ammette asintoti orizzontali. Come capita per quelli orizzontali, si possono avere nessuno, uno o al massimo due asintoti obliqui.
Come si vede se ci sono asintoti?
Per trovarlo bisogna risolvere una determinata formula ovvero y=mx+q. M sta a significare “coefficiente angolare” e deve essere sempre diverso da 0, altrimenti si tratterebbe di un asintoto orizzontale (si spiega cosi il motivo per cui questi due non posso coesistere in una funzione).