Sommario
Quando esiste l esponenziale?
Una FUNZIONE si dice ESPONENZIALE quando la variabile x compare come esponente di una potenza. y è uguale ad a elevato ad x. In questo caso la BASE della potenza è una COSTANTE (nel nostro esempio la a) e l’esponente è la variabile x. Per questa ragione la funzione viene detta FUNZIONE ESPONENZIALE A BASE COSTANTE.
Cosa significa aumento esponenziale?
fig. Di un fatto o un fenomeno che procede con progressione molto rapida: aumento, crescita e., sviluppo e.; con i cellulari il traffico telefonico è aumentato in modo esponenziale.
Quando un esponenziale e decrescente?
La funzione esponenziale di base a con a>0 ∧ a≠1 è una funzione crescente se a>1 mentre è decrescente se 0 < a < 1. La funzione esponenziale è sempre monotona crescente o decrescente.
Quali sono le proprietà delle esponenziali?
Prima di vedere quali sono le proprietà delle esponenziali è necessaria una piccola premessa. Un’esponenziale è una potenza a esponente reale, cioè una potenza con base fissata nell’insieme dei numeri reali positivi ed esponente variabile nell’insieme dei numeri reali.
Come funziona l’esponenziale complesso?
L’esponenziale complesso è una funzione olomorfa e periodica con periodo immaginario, che mappa ogni retta del piano complesso in una spirale logaritmica con centro nell’origine. Ciò si può vedere osservando che rette parallele all’asse reale e immaginario vengono mappate rispettivamente in una retta e in un cerchio .
Qual è il prodotto tra due esponenziali?
Il prodotto tra due esponenziali con la stessa base è un’esponenziale che ha per base la stessa base e per esponente la somma degli esponenti Leggere la precedente uguaglianza da destra verso sinistra non cambia nulla all’atto teorico, ma così facendo si mette in risalto come comportarsi con un’esponenziale il cui l’esponente è una somma
Quali sono i metodi di risoluzione delle equazioni esponenziali?
Metodi di risoluzione delle equazioni esponenziali . Per risolvere le equazioni esponenziali bisogna sapere perfettamente cosa significa elevare a potenza un numero e conoscere vita, morte e miracoli dei logaritmi, essendo il logaritmo l’operatore inverso dell’esponenziale (sotto opportune ipotesi):