Sommario
- 1 Cosa è una matrice quadrata di ordine?
- 2 Come si indica una matrice?
- 3 Cosa è una matrice diagonalizzabile?
- 4 Cosa sono elementi di una matrice?
- 5 Quali sono le nozioni di matrice?
- 6 Qual è il rango di una matrice quadrata?
- 7 Come individuare la posizione di un elemento in una matrice?
- 8 Qual è l’ordine di una matrice?
Cosa è una matrice quadrata di ordine?
Una matrice quadrata di ordine è detta matrice invertibile se esiste una matrice quadrata dello stesso ordine della matrice, solitamente indicata con, tale che il prodotto riga per colonna tra la due matrici restituisce la matrice identità di ordine.
Come si indica una matrice?
Generalmente una matrice si indica con una lettera maiuscola e viene scritta nel modo seguente: I pedici di ogni elemento della matrice hanno un significato ben preciso: il primo e il secondo numero indicano rispettivamente la riga e la colonna in cui l’elemento è posizionato.
Come calcolare la matrice inversa di una matrice quadrata?
La matrice inversa può essere calcolata solo per le matrici quadrate invertibili ed è quella matrice che, moltiplicata per la matrice di partenza, restituisce la matrice identità. In questa lezione vedremo dapprima la definizione di matrice invertibile per poi mostrarvi come calcolare la matrice inversa di una matrice quadrata
Quali sono le principali proprietà della matrice inversa?
Concludiamo la lezione con l’elenco delle principali proprietà della matrice inversa: 1) L’inversa di una matrice invertibile è una matrice invertibile, e l’inversa dell’inversa coincide con la matrice di partenza
Cosa è una matrice diagonalizzabile?
Una matrice diagonalizzabile è una matrice quadrata simile a una matrice diagonale. In altri termini una matrice A è diagonalizzabile se esiste una matrice invertibile P tale che PD=AP, dove D è una matrice diagonale dello stesso ordine di A. In questa lezione daremo la definizione di matrice diagonalizzabile per poi enunciare il teorema di
Cosa sono elementi di una matrice?
Gli elementi di una matrice vengono in genere indicati con una coppia di indici a pedice. In matematica, in particolare in algebra lineare, una matrice è una tabella ordinata di elementi.
Qual è il determinante di una matrice quadrata?
Determinante nullo: il determinante di una matrice quadrata è uguale a 0 se e solo se – ha una riga (o una colonna) tutta di elementi nulli, oppure – due righe (o due colonne) sono proporzionali, oppure – una riga (o una colonna) è combinazione lineare di due o più righe (o colonne).
Qual è la dimensione di una matrice?
Dimensione di una matrice. Chiamiamo dimensione di una matrice il prodotto tra il numero di righe e il numero di colonne. Tale prodotto va indicato come tale e non come numero: ad esempio se una matrice ha righe e colonne, diciamo che ha dimensione .
Quali sono le nozioni di matrice?
Le nozioni di matrice definita positiva, matrice definita negativa, matrice semidefinita (positiva o negativa) e matrice indefinita vengono introdotte per le matrici simmetriche a coefficienti in campo reale e per le matrici hermitiane. In questa lezione ci occuperemo dello studio definitezza delle matrici simmetriche a coefficienti reali.
Qual è il rango di una matrice quadrata?
In modo equivalente, il rango di una matrice è l’ordine massimo delle sottomatrici quadrate con determinante diverso da zero che si possono estrarre da , dove per ordine di una matrice quadrata si intende il suo numero di righe (o di colonne).
Qual è l’elemento della matrice?
si indica l’elemento della matrice che corrisponde all’incrocio tra la riga i-esima e la colonna j-esima. Ad esempio indica l’elemento di una matrice che si trova all’incrocio tra la prima riga e la terza colonna, mentre denota l’elemento di una matrice situato all’incrocio tra la quinta riga e la seconda colonna.
Qual è la matrice rettangolare?
Matrice rettangolare: è una matrice in cui il numero delle righe è diverso dal numero delle colonne, cioè con . Non importa quante esse siano, l’importante è che non siano in ugual numero. Eccone due esempi:
Come individuare la posizione di un elemento in una matrice?
Per individuare la posizione di un elemento in una matrice si usano due indici che speci – cano, il primo in quale riga si trova l’elemento ed il secondo in quale colonna. Ad esempio l’elemento di posto 13 nella matrice Anon esiste perch e la matrice Aha solo due colonne, 1
Qual è l’ordine di una matrice?
Ordine di una matrice. Per ordine di una matrice si intende il numero di righe e di colonne della stessa. Ad, esempio, prendiamo la matrice A riportata nell’esempio in alto. Essa è una matrice con 3 righe e quattro colonne, quindi si tratta di una matrice 3 x 4. Pertanto, scriviamo .