Qual è la divergenza di un vettore?
Nel calcolo differenziale vettoriale, la divergenza è un campo scalare che misura la tendenza di un campo vettoriale a divergere o a convergere verso un punto dello spazio. Il valore della divergenza di un vettore {displaystyle mathbf {F} } in una certa posizione è dato da un operatore differenziale, denotato con
Qual è il valore della divergenza?
Nel calcolo differenziale vettoriale, la divergenza è un campo scalare che misura la tendenza di un campo vettoriale a divergere o a convergere verso un punto dello spazio. Il valore della divergenza di un vettore in una certa posizione è dato da un operatore differenziale, denotato con ∇ ⋅ o , che
Qual è la definizione di divergenza di un campo?
La definizione di divergenza di un campo è ottenuta considerando il caso in cui la regione di spazio si restringe fino a diventare un punto: si tratta del limite, per il volume della regione che tende a zero, del rapporto tra il flusso del campo attraverso la superficie e il volume stesso.
Qual è la divergenza della derivata esterna?
La divergenza è un caso particolare della derivata esterna, quando quest’ultima mappa una 2-forma in una 3-forma in . Si consideri una 2-forma: j = F 1 d y ∧ d z + F 2 d z ∧ d x + F 3 d x ∧ d y , {\\displaystyle j=F_{1}\\ dy\\wedge dz+F_{2}\\ dz\\wedge dx+F_{3}\\ dx\\wedge dy,}
Qual è la funzione di divergenza di un campo?
La funzione f x,y,z che divergenza di un campo rappresenta la densità delle linee di flusso del campo uscenti da un punto per unità di volume. Infatti integrando la divergenza in un volume si ottiene il flusso del campo che attraversa la superficie che delimita il volume.
Cosa è il rotore di un campo vettoriale attraverso una superficie chiusa?
Il flusso del rotore di un campo vettoriale attraverso una superficie chiusa eguaglia il lavoro del campo lungo il bordo della superficie stessa. Tale lavoro viene detto circuitazione per ricordare che il bordo è una linea chiusa. Il Teorema di Stokes afferma quindi che il flusso del rotore di un campo vettoriale attraverso una