Quali sono le derivate fondamentali logaritmiche?
Vediamo poi le derivate fondamentali logaritmiche. La derivata di f (x)=a^x è pari a f'(x)=(a^x) ln (a), mentre la derivata di f (x)=e^x è pari a f'(x)=e^x, ovvero rimane invariata. La derivata di f (x)=loga (x) è pari a f'(x)=1/xln (a). Infine, la funzione f'(x)=ln (x) si deriva in f'(x)=1/x. Continua la lettura.
Come calcolare la derivata prima di una funzione?
Per calcolare la derivata prima di una funzione usiamo la definizione di derivata di una funzione in un punto x 0, considerando però x 0 come un punto generico, ossia come variabile.
Qual è la derivata della funzione per la costante?
Vediamo quali sono le principali: 1) La derivata del prodotto di una funzione per una costante equivale al prodotto della derivata della funzione per la costante. Se abbiamo f (x)=2ln (x), la derivata è f'(x)=2/x. 2) La derivata della differenza e della somma di due funzioni equivale alla differenza o alla somma delle due funzioni.
Qual è la derivata di una funzione in un punto?
Abbiamo definito la derivata di una funzione in un punto, e lo ripetiamo: la derivata di una funzione in un punto è un valore reale, ossia un numero. Ora è il momento di estendere la definizione alla totalità dei punti in cui è possibile calcolare la derivata, e dunque di parlare di derivata prima di una funzione , intesa come funzione.
Quali sono le funzioni logaritmiche?
Poiché le funzioni logaritmiche, come si evince dai due grafici precedenti, sono definite solo per i valori positivi della x, il loro campo di esistenza si ottiene considerando, non solo il campo di esistenza dell’argomento del logaritmo, ma anche imponendo che l’argomento stesso sia strettamente positivo x = 0 ⇒ y = log
Qual è la funzione logaritmica con base maggiore di 1?
Grafico della funzione logaritmica con base maggiore di 1 (in blu il logaritmo naturale y=ln(x), in rosso y=log 4 (x) ) Proprietà della funzione logaritmica con base maggiore di 1 . 1) Dominio: 2) Non ha senso parlare di parità o disparità, alla luce del dominio. 3) Funzione illimitata con immagine.