Sommario
Come risulta evidente la definizione di vettori ortogonali?
Osservazione: come risulta evidente, la definizione di vettori ortogonali si riferisce a una coppia di vettori e dipende dal prodotto scalare che si considera.
Cosa è la norma di un vettore?
La norma di un vettore è una applicazione che a un vettore associa un numero reale. In sostanza, la norma di un vettore si calcola estraendo la radice quadrata della somma dei quadrati delle componenti del vettore. In modo equivalente possiamo esprimere la norma di un vettore in termini di prodotto scalare.
Come si calcola la somma di vettori?
La somma vettoriale è un’ operazione tra vettori che a due vettori associa un terzo vettore, detto vettore somma e indicato con. Per calcolare la somma di vettori si può procedere per via geometrica o per via algebrica; tutto dipende dalla richiesta dell’esercizio, da come ci vengono assegnati i vettori e dallo spazio in cui si lavora.
Cosa sono i matrici e i vettori?
Matrici e vettori. Il prodotto scalare è un’operazione che si effettua tra due vettori e che manifesta la propria importanza a 360° nello studio dell’Algebra Lineare. Esso è spesso accompagnato dal concetto di norma di un vettore, la cui definizione non a caso discende proprio da quella di prodotto scalare.
Cosa è un vettore applicato?
Un vettore applicato è individuato da un punto iniziale (o punto di applicazione) e da un punto finale, e ne è un esempio il vettore della prima immagine. Due vettori applicati e si dicono vettori equipollenti se si verifica una delle seguenti condizioni: (a) se coincide con, risulta che coincide con.
Qual è il modulo di un vettore?
– modulo, detto anche intensità o lunghezza, e definito come la misura del segmento rispetto a una fissata unità di misura. Il segmento orientato di primo estremo e secondo estremo si indica con e una sua rappresentazione grafica è la seguente: Rappresentazione grafica di un vettore
Qual è la relazione tra due o più vettori equipollenti?
La relazione che lega due o più vettori equipollenti è una relazione di equivalenza, infatti l’equipollenza tra vettori è una relazione: – riflessiva, poiché ogni vettore è equipollente a se stesso; – simmetrica, infatti se è equipollente a allora è equipollente ad ;