Sommario
Che cosa dovrebbe essere la teoria degli insiemi?
Teoria degli insiemi dovrebbe essere la base di tutte le matematiche: e’ la disciplina che va studiata prima di tutte le altre che dovrebbero avvantaggiarsi del suo linguaggio e dei suoi concetti. Purtroppo, dopo l’entusiasmo inziale, dagli inizi del 1900 l’importanza di teoria degli insiemi e’ stata molto
Qual è la teoria assiomatica degli insiemi GB?
la teoria assiomatica degli insiemi GB, presentandone i risultati fondamentali sui numeri ordinali e cardinali, e facendo vedere come gli oggetti basilari della matematica possano essere ricostruiti in termini insiemistici (relazioni, funzioni, numeri naturali, numeri reali, eccetera).
Qual è la teoria degli insiemi infiniti?
TEORIA DEGLI INSIEMI. Il concetto di insieme è relativamente recente nella storia della matematica. La formulazione moderna di insieme si deve al matematico tedesco Georg Cantor (1845- 1918) verso la fine dell’800. Cantor arriva alla definizione di insieme durante i suoi studi relativi agli insiemi infiniti che lo portano ad una riflessione
Quali sono le origini della teoria rigorosa degli insiemi?
Le origini della teoria rigorosa degli insiemi. L’idea importante di Cantor, che rese la teoria degli insiemi un nuovo campo di studio, è stata quella di affermare che due insiemi A e B hanno lo stesso numero di elementi se esiste un modo di appaiare esaustivamente gli elementi di A con gli elementi di B.
Cosa distingue la teoria ingenua degli insiemi?
La teoria ingenua degli insiemi si distingue dalla teoria assiomatica degli insiemi per il fatto che la prima considera gli insiemi come collezioni di oggetti, chiamati elementi o membri dell’insieme, mentre la seconda considera insiemi quelli che soddisfano determinati assiomi.
Quali sono i due insiemi uguali?
Due insiemi A e B sono detti uguali quando hanno gli stessi elementi, cioè se ogni elemento di A è un elemento di B e ogni elemento di B è un elemento di A. (Vedi assioma di estensionalità). Un insieme è determinato dai suoi elementi; la descrizione è irrilevante.