Sommario
Come creare una matrice in R?
Le matrici vengono create in R tramite la funzione matrix(data, nrow, ncol, byrow = F); notare che di default R costruisce le matrici per COLONNE: tale comportamento si può invertire ponendo byrow = T.
Come creare una lista in R?
Per costruire una lista puoi utilizzare la funzione list() : mia_lista <- list(elem1, elem2 …) Gli argomenti passati alla funzione list sono gli elementi della lista. Ricorda, questi elementi possono essere matrici, vettori, altre liste, ecc…
Creazione di una matrice in R: l’uso della funzione matrix() Gli argomenti da specificare nella funzione matrix()sono nell’ordine: •l’insieme degli elementi che costituiscono la matrice; •il numero di righe che dovrà avere la matrice (nrow=numero di righe);
Quali sono le principali proprietà della matrice inversa?
Concludiamo la lezione con l’elenco delle principali proprietà della matrice inversa: 1) L’inversa di una matrice invertibile è una matrice invertibile, e l’inversa dell’inversa coincide con la matrice di partenza
Come calcolare la matrice inversa di una matrice quadrata?
La matrice inversa può essere calcolata solo per le matrici quadrate invertibili ed è quella matrice che, moltiplicata per la matrice di partenza, restituisce la matrice identità. In questa lezione vedremo dapprima la definizione di matrice invertibile per poi mostrarvi come calcolare la matrice inversa di una matrice quadrata
Cosa è una matrice lineare?
Una matrice associata a un’applicazione lineare (o matrice rappresentativa di un’applicazione lineare) rappresenta la trasformazione lineare cui è riferita rispetto a due fissate basi degli spazi vettoriali di partenza e d’arrivo.
Come calcolare la matrice associata alla trasformazione lineare?
Per calcolare la matrice associata a un’applicazione rispetto alle basi canoniche di e di è sufficiente calcolare le immagini mediante dei vettori della base canonica di e disporre le componenti di questi vettori per colonne in una matrice. Quella così ottenuta è la matrice associata alla trasformazione lineare.
Qual è la nozione di matrice?
F) La nozione di matrice associata a un’applicazione lineare è l’inverso logico del concetto di applicazione lineare definita da una matrice. In altri termini, ogni matrice è la matrice associata all’applicazione lineare rispetto alle basi canoniche di dominio e codominio.
Come si può eseguire la divisione fra matrici?
Non esiste una definizione matematica riguardo alla divisione fra matrici. Per eseguire questa operazione, si moltiplica la prima matrice per l’inverso della seconda. Il problema iniziale [A] ÷ [B] può quindi essere riscritto nel seguente modo [A] * [B] -1 o [B] -1 * [A].
Come individuare la posizione di un elemento in una matrice?
Per individuare la posizione di un elemento in una matrice si usano due indici che speci – cano, il primo in quale riga si trova l’elemento ed il secondo in quale colonna. Ad esempio l’elemento di posto 13 nella matrice Anon esiste perch e la matrice Aha solo due colonne, 1
Come si indica una matrice?
Generalmente una matrice si indica con una lettera maiuscola e viene scritta nel modo seguente: I pedici di ogni elemento della matrice hanno un significato ben preciso: il primo e il secondo numero indicano rispettivamente la riga e la colonna in cui l’elemento è posizionato.
Qual è la matrice rettangolare?
Matrice rettangolare: è una matrice in cui il numero delle righe è diverso dal numero delle colonne, cioè con . Non importa quante esse siano, l’importante è che non siano in ugual numero. Eccone due esempi:
Qual è l’elemento della matrice?
si indica l’elemento della matrice che corrisponde all’incrocio tra la riga i-esima e la colonna j-esima. Ad esempio indica l’elemento di una matrice che si trova all’incrocio tra la prima riga e la terza colonna, mentre denota l’elemento di una matrice situato all’incrocio tra la quinta riga e la seconda colonna.