Sommario
Come derivare una funzione esponenziale?
Quindi, se la base è a > 0 a>0 a>0, allora la derivata prima della funzione esponenziale f ( x ) = a x f(x)=a^x f(x)=ax è f ′ ( x ) = a x ln ( a ) f'(x)=a^x \ln(a) f′(x)=axln(a) Se la base è il numero di Nepero e, allora la funzione esponenziale ha derivata uguale a se stessa: f ( x ) = e x → f ′ ( x ) = e x f(x)=e^x …
Come derivare funzioni?
1) La derivata del prodotto di una costante per una funzione è uguale al prodotto della costante per la derivata della funzione. Ogni volta che abbiamo un coefficiente che moltiplica una funzione, se dobbiamo derivare il tutto è sufficiente riscrivere il coefficiente e derivare solamente la funzione.
Come si deriva il logaritmo?
La derivata del logaritmo, o meglio la derivata del logaritmo in base a di x, è uguale al reciproco del prodotto tra x e il logaritmo naturale di a, e si calcola usando la definizione di derivata come limite del rapporto incrementale.
Qual è un esempio fisico di funzione esponenziale?
Esempio fisico di funzione esponenziale. Un esempio semplice è quello di un oggetto lanciato ad una velocità in un mezzo viscoso. Se supponiamo che la resistenza posta dal mezzo all’avanzamento dell’oggetto sia proporzionale alla velocità di quest’ultimo:
Qual è il prodotto tra due esponenziali?
Il prodotto tra due esponenziali con la stessa base è un’esponenziale che ha per base la stessa base e per esponente la somma degli esponenti Leggere la precedente uguaglianza da destra verso sinistra non cambia nulla all’atto teorico, ma così facendo si mette in risalto come comportarsi con un’esponenziale il cui l’esponente è una somma
Come funziona l’esponenziale complesso?
L’esponenziale complesso è una funzione olomorfa e periodica con periodo immaginario, che mappa ogni retta del piano complesso in una spirale logaritmica con centro nell’origine. Ciò si può vedere osservando che rette parallele all’asse reale e immaginario vengono mappate rispettivamente in una retta e in un cerchio .
Qual è la derivata del prodotto di due funzioni?
3) La derivata del prodotto di due funzioni è data dalla somma tra il prodotto della prima funzione derivata per la seconda non derivata, e la prima funzione non derivata per la seconda derivata. Nel caso del prodotto di tre o più funzioni vale una regola del tutto analoga. Ad esempio nel caso di tre funzioni: