Sommario
Cosa è una funzione continua in matematica?
In matematica, una funzione continua è una funzione che, intuitivamente, fa corrispondere ad elementi sufficientemente vicini del dominio elementi arbitrariamente vicini del codominio. Esistono diverse definizioni di continuità, corrispondenti ai contesti matematici in cui vengono utilizzate:
Qual è la somma di due funzioni continue?
1) La somma (differenza) di due funzioni continue è una funzione continua. Date , sia un punto in cui entrambe le funzioni sono continue. Allora la funzione somma (differenza ) è continua in . 2) Il prodotto di due funzioni continue è una funzione continua. Date , sia un punto in cui entrambe le funzioni sono continue.
Come si definisce una funzione limitata?
Sempre per le funzioni reali, si indica come funzione limitata superiormente una funzione il cui valore non può mai essere superiore ad un dato valore e come funzione limitata inferiormente una funzione il cui valore non può mai essere minore di un dato valore. La nozione di funzione limitata viene generalizzata da quella di operatore limitato
Qual è la condizione più debole di continuità?
Nel caso di funzioni di più variabili, è possibile definire una condizione più debole di continuità, detta continuità separata: una funzione è continua separatamente in un punto rispetto a una delle variabili se è continua la funzione di una variabile dipendente solo dal parametro , lasciando le restanti variabili fissate al valore
Quali sono i concetti della topologia?
Concetti fondamentali come convergenza, limite, continuità, connessione o compattezza trovano nella topologia la loro migliore formalizzazione. Si basa essenzialmente sui concetti di spazio topologico, funzione continua e omeomorfismo. Col termine topologia si indica anche la collezione di aperti che definisce uno spazio topologico.
Quali sono gli insiemi chiusi di questa topologia?
Gli insiemi chiusi di questa topologia sono solo le varietà affini, ovvero gli insiemi che sono zeri di polinomi in due variabili: qui sono mostrati ad esempio due circonferenze, una parabola, un’iperbole, una cubica (definita da un’equazione di terzo grado).
Cosa è la topologia dei luoghi?
La topologia o studio dei luoghi (dal greco τόπος, tópos, “luogo”, e λόγος, lógos, “studio”) è lo studio delle proprietà delle figure e delle forme che
Quali sono le definizioni di continuità?
Esistono diverse definizioni di continuità, corrispondenti ai contesti matematici in cui vengono utilizzate: la continuità di una funzione è uno dei concetti di base della topologia e dell’analisi matematica. La continuità di una funzione può essere definita anche in modo locale: in questo caso si parla di continuità in un punto del
Quali sono le funzioni continue?
Le funzioni continue sono caratterizzate dall’avere una stretta correlazione tra il valore che la funzione assume in un punto e i valori nei “dintorni” di , in altre parole nel punto la funzione coincide col suo limite. Formalizzando questa definizione, più rigorosamente si può scrivere
Qual è la definizione di continuità?
Definizione di continuità. Le funzioni continue sono caratterizzate dall’avere una stretta correlazione tra il valore che la funzione assume in un punto e i valori nei “dintorni” di , in altre parole nel punto la funzione coincide col suo limite. Formalizzando questa definizione, più rigorosamente si può scrivere:
Qual è la funzione inversa di una data funzione f?
La funzione inversa di una data funzione f, se esiste, è quella funzione indicata con f-1 che definisce l’associazione inversa di f. Affinché l’inversa esista è necessario che la funzione di partenza sia invertibile.
Qual è il grafico della funzione inversa?
Grafico della funzione inversa. Se abbiamo tracciato il grafico di una funzione e siamo di fronte ad una funzione invertibile, il grafico dell’inversa è il simmetrico del grafico della funzione di partenza rispetto alla bisettrice del primo e terzo quadrante.
Qual è la condizione più forte di continuità?
Una condizione più forte (e globale) di continuità è quella di continuità uniforme: una funzione continua tra due spazi metrici si dice uniformemente continua se il parametro della definizione non dipende dal punto considerato, ovvero se è possibile scegliere un che soddisfi la definizione per tutti i punti del dominio.
Cosa è una funzione uniformemente continua?
In matematica, in particolare in analisi matematica, una funzione uniformemente continua è un caso speciale di funzione continua. Intuitivamente una funzione è uniformemente continua se una piccola variazione del punto comporta una piccola variazione dell’immagine () (quindi è continua), e la misura della variazione di () dipende solo dalla
Qual è la continuità di una variabile reale?
Nel caso di funzioni di una variabile reale, spesso la continuità è presentata come una proprietà del grafico: la funzione è continua se il suo grafico è formato