Cosa è una matrice triangolare?
Una matrice triangolare è una matrice quadrata in cui tutti gli elementi sopra o sotto la diagonale principale sono nulli; in particolare, se sono nulli gli elementi sopra la diagonale la matrice è detta triangolare inferiore, se sono nulli quelli sotto la diagonale si ha una matrice triangolare superiore.
Quali sono le matrici triangolari inferiori?
Le matrici triangolari inferiori sono matrici quadrate che hanno nulli tutti gli elementi al di sopra della diagonale principale, cioè della forma: {\\displaystyle l_ {i,i}} ) la matrice è chiamata matrice unità triangolare inferiore, matrice triangolare inferiore unitaria o matrice triangolare inferiore normata .
Qual è la matrice rettangolare?
Matrice rettangolare: è una matrice in cui il numero delle righe è diverso dal numero delle colonne, cioè con . Non importa quante esse siano, l’importante è che non siano in ugual numero. Eccone due esempi:
Qual è la funzione triangolare in Matlab?
La funzione triangolare in MATLAB Algebra lineare è un campo della matematica che si occupa principalmente di matrici: rettangolare strutture composte da righe e colonne di numeri. Per alcune applicazioni, è utile per estrarre solo la parte superiore o inferiore triangolare metà di u
Qual è il determinante di matrici triangolari?
Determinante di matrici triangolari: se la matrice quadrata di cui vogliamo calcolare il determinante è una matrice triangolare (superiore o inferiore), allora il determinante è dato dal prodotto degli elementi della diagonale principale.
Qual è il determinante di una matrice?
Il determinante di una matrice è un numero associato a ciascuna matrice quadrata, e ne esprime alcune proprietà algebriche e geometriche. Se A è una matrice quadrata, il suo determinante si indica con det (A), o più raramente con |A|, e si calcola in modi differenti a seconda della dimensione della matrice.
Qual è la matrice invertibile?
Matrice invertibile. Da Wikipedia, l’enciclopedia libera. Jump to navigation Jump to search. In matematica, in particolare in algebra lineare, una matrice quadrata è detta invertibile, o regolare, se esiste un’altra matrice tale che il prodotto matriciale tra le due restituisce la matrice identità .
Quali sono le principali proprietà della matrice inversa?
Concludiamo la lezione con l’elenco delle principali proprietà della matrice inversa: 1) L’inversa di una matrice invertibile è una matrice invertibile, e l’inversa dell’inversa coincide con la matrice di partenza
Come calcolare un determinante di matrici 3×3?
Determinante di matrici 3×3 – regola di Sarrus Per calcolare il determinante di una matrice quadrata di ordine 3 possiamo applicare la regola di Sarrus , secondo cui: Ricordarla a memoria sarebbe quasi impossibile.