Cosa è uno spazio metrico completo?
Jump to navigation Jump to search. In matematica, uno spazio metrico completo è uno spazio metrico in cui tutte le successioni di Cauchy sono convergenti ad un elemento dello spazio. Si tratta di un importante caso particolare di spazio uniforme completo.
Cosa è uno spazio compatto in matematica?
In matematica, in particolare in topologia, uno spazio compatto è uno spazio topologico tale che ogni suo ricoprimento aperto contiene un sottoricoprimento finito. Un insieme contenuto in uno spazio topologico si dice compatto se è uno spazio compatto nella topologia indotta.
Cosa si dice compatto in uno spazio topologico?
Un insieme contenuto in uno spazio topologico si dice compatto se è uno spazio compatto nella topologia indotta. Un insieme in uno spazio topologico si dice inoltre σ-compatto se è costituito dall’unione numerabile di insiemi compatti.
Qual è lo spazio metrico più comune?
Lo spazio metrico più comune è lo spazio euclideo di dimensione 1, 2 o 3. Uno spazio metrico è in particolare uno spazio topologico, e quindi eredita le nozioni di compattezza, connessione, insieme aperto e chiuso. Si applicano quindi agli spazi metrici gli strumenti della topologia algebrica, quali ad esempio il gruppo fondamentale.
Cosa è la geometria analitica dello spazio?
GEOMETRIA ANALITICA NELLO SPAZIO (3D Geometry) SISTEMA DI RIFERIMENTO NELLO SPAZIO La geometria analitica dello spazio è molto simile alla geometria analitica del piano. In particolare se il piano e la retta hanno almeno un punto in comune, allora la retta giace sul piano.
Qual è il quoziente di uno spazio connesso?
Il quoziente di uno spazio connesso è uno spazio connesso. L’immagine di uno spazio connesso tramite una funzione continua è uno spazio connesso. Allo stesso modo, l’immagine di uno spazio connesso per archi tramite una funzione continua è uno spazio connesso per archi. La chiusura di uno spazio connesso è ancora connessa.
Qual è la definizione di spazio connesso per archi?
La definizione di spazio localmente connesso per archi è analoga. La locale connessione è normalmente una proprietà minima di regolarità locale che viene richiesta affinché siano validi dei teoremi molto generali. Ad esempio, è spesso richiesta nella teoria dei rivestimenti.
Quali sono le componenti connesse di uno spazio topologico?
Componenti connesse. Le componenti connesse di uno spazio topologico sono i sottoinsiemi connessi massimali (rispetto all’inclusione). In altre parole, sono i sottoinsiemi di X connessi più grandi, ovvero i vari pezzi da cui X è formato. Se lo spazio X è connesso, esisterà una sola componente che coincide con X stesso.
Cosa è uno spazio normato?
Spazio normato. Da Wikipedia, l’enciclopedia libera. In matematica, uno spazio vettoriale normato, o più semplicemente spazio normato, è uno spazio vettoriale in cui ogni vettore ha definita una lunghezza, cioè una norma .