Cosa è uno spazio vettoriale normato?
In matematica, uno spazio vettoriale normato, o più semplicemente spazio normato, è uno spazio vettoriale in cui ogni vettore ha definita una lunghezza, cioè una norma
Cosa è uno spazio normato?
Spazio normato. Da Wikipedia, l’enciclopedia libera. In matematica, uno spazio vettoriale normato, o più semplicemente spazio normato, è uno spazio vettoriale in cui ogni vettore ha definita una lunghezza, cioè una norma .
Qual è lo spazio vettoriale reale o complesso?
Uno spazio vettoriale reale o complesso è uno spazio vettoriale in cui è rispettivamente il campo dei numeri reali o il campo dei numeri complessi. Una nozione correlata è quella di modulo . Primi esempi [ modifica | modifica wikitesto ]
Cosa è un sottospazio vettoriale?
Un sottospazio vettoriale di uno spazio vettoriale è un sottoinsieme che eredita da una struttura di spazio vettoriale. Per ereditare questa struttura, è sufficiente che sia non vuoto e sia chiuso rispetto alle due operazioni di somma e prodotto per scalare.
Qual è la dimensione di uno spazio vettoriale?
In matematica, la dimensione di uno spazio vettoriale è la cardinalità di una sua base, ovvero è il numero di vettori che la compongono. È talvolta chiamata
Cosa è la norma di un vettore?
La norma di un vettore è una applicazione che a un vettore associa un numero reale. In sostanza, la norma di un vettore si calcola estraendo la radice quadrata della somma dei quadrati delle componenti del vettore. In modo equivalente possiamo esprimere la norma di un vettore in termini di prodotto scalare.
Cosa è uno spazio semplicemente connesso?
Spazio semplicemente connesso Da Wikipedia, l’enciclopedia libera. In topologia, uno spazio topologico è semplicemente connesso se è connesso per archi e il suo gruppo fondamentale è il gruppo banale, ovvero se ogni curva chiusa può essere deformata fino a ridursi a un singolo punto.
Come si calcola la norma di un vettore?
In sostanza, la norma di un vettore si calcola estraendo la radice quadrata della somma dei quadrati delle componenti del vettore. In modo equivalente possiamo esprimere la norma di un vettore in termini di prodotto scalare. infatti.