Sommario
Cosa si dice compatto in uno spazio topologico?
Un insieme contenuto in uno spazio topologico si dice compatto se è uno spazio compatto nella topologia indotta. Un insieme in uno spazio topologico si dice inoltre σ-compatto se è costituito dall’unione numerabile di insiemi compatti.
Quali sono le definizioni di compattezza?
La compattezza è una nozione definita per qualsiasi spazio topologico. Esistono due concetti distinti di compattezza, definiti, rispettivamente, in termini di ricoprimenti e di successioni. Le due definizioni coincidono per molti spazi topologici, ad esempio per gli spazi metrici, e, più in generale, per gli spazi sequenziali.
Quali sono gli spazi topologici?
Gli spazi topologici sono usati quotidianamente dall’analisi matematica, dall’algebra astratta, dalla geometria: questo rende la topologia una delle grandi idee unificanti della matematica. La topologia generale (o topologia degli insiemi di punti) definisce e studia alcune proprietà utili degli spazi e delle mappe, come la loro connessione
Cosa è uno spazio compatto in matematica?
In matematica, in particolare in topologia, uno spazio compatto è uno spazio topologico tale che ogni suo ricoprimento aperto contiene un sottoricoprimento finito. Un insieme contenuto in uno spazio topologico si dice compatto se è uno spazio compatto nella topologia indotta.
Quali sono i concetti della topologia?
Concetti fondamentali come convergenza, limite, continuità, connessione o compattezza trovano nella topologia la loro migliore formalizzazione. Si basa essenzialmente sui concetti di spazio topologico, funzione continua e omeomorfismo. Col termine topologia si indica anche la collezione di aperti che definisce uno spazio topologico.
Quali sono gli insiemi chiusi di questa topologia?
Gli insiemi chiusi di questa topologia sono solo le varietà affini, ovvero gli insiemi che sono zeri di polinomi in due variabili: qui sono mostrati ad esempio due circonferenze, una parabola, un’iperbole, una cubica (definita da un’equazione di terzo grado).