Sommario
- 1 Qual è la convessità di una funzione?
- 2 Qual è il significato di una funzione convessa?
- 3 Qual è la concavità di una funzione?
- 4 Come si definisce una funzione convessa?
- 5 Qual è la somma di funzioni convesse?
- 6 Cosa è un insieme convesso?
- 7 Cosa si dice convessa in matematica?
- 8 Qual è il concetto di funzione concava?
Qual è la convessità di una funzione?
Se una funzione é dotata di derivata prima e seconda in ogni punto di un intervallo aperto allora si ha: , allora è convessa in. , allora è concava in. Da questo ultimo teorema si ricava un metodo pratico per determinare la convessità ( concavità) di una funzione.
Qual è il significato di una funzione convessa?
Significato geometrico di funzione convessa Dal punto di vista geometrico, una funzione è convessa su un intervallo se e solo se ogni coppia di punti del grafico della funzione è congiunta mediante un segmento che sta al di sopra o oppure coincide con una parte del grafico. Esempio di funzione convessa.
Cosa è concavità e convessità?
Concavità e convessità Data una funzione derivabile in ogni punto di un intervallo aperto , dato un punto di e corrispondente di sulla curva grafico di si può dare la seguente definizione. Diciamo che la è convessa (ha la concavità verso l’alto) in un punto di se il grafico di si trova tutto al di sopra della tangente alla curva nel punto .
Come si definisce la composizione di funzioni?
In matematica, la composizione di funzioni è l’applicazione di una funzione al risultato di un’altra funzione. Più precisamente, una funzione tra due insiemi e trasforma ogni elemento di in uno di : in presenza di un’altra funzione che trasforma ogni elemento di in un elemento di un altro insieme , si definisce la composizione di e come la
Qual è la concavità di una funzione?
Una funzione convessa è tale se il segmento che congiunge due punti qualsiasi del suo grafico giace sopra il grafico stesso o coincide con una sua parte. – concavità verso l’alto per indicare la convessità di una funzione; – concavità verso il basso per indicare la concavità di una funzione.
Come si definisce una funzione convessa?
In alcuni articoli la definizione di funzione convessa si basa su questo criterio, che però non è equivalente alla definizione oggi comunemente usata: Una funzione è convessa se e solo se ha derivate destra e sinistra definite su , crescenti, con − ′ ≤ + ′.
Quali sono le funzioni convesse?
Le funzioni convesse sono di notevole importanza in molte aree della matematica. Per esempio, sono importanti nei problemi di ottimizzazione, e sono tra le più studiate nel calcolo delle variazioni. In analisi e nella teoria della probabilità, sono le funzioni per cui vale la disuguaglianza di Jensen.
Cosa è una funzione convessa sull’intervallo?
Una funzione definita su un intervallo si dice funzione convessa (oppure funzione debolmente convessa) sull’intervallo se, comunque si considerino due punti nell’intervallo con , risulta che. Diremo invece che è una funzione strettamente convessa (oppure convessa in senso forte) sull’intervallo se e solo se sussiste la disuguaglianza stretta.
Qual è la somma di funzioni convesse?
La somma di funzioni convesse è convessa; la somma di funzioni concave è concava . Se sono funzioni convesse su un intervallo allora la funzione somma . è una funzione convessa sull’intervallo . Attenzione: nulla si può dire a priori sulla differenza di funzioni convesse. Esistono funzioni convesse la cui differenza è convessa, ad esempio
Cosa è un insieme convesso?
In uno spazio euclideo un insieme convesso è un insieme nel quale, per ogni coppia di punti, il segmento che li congiunge è interamente contenuto nell’insieme.
Come si dimostra l’intersezione di due insiemi convessi?
Si può inoltre dimostrare che l’intersezione di due insiemi convessi è ancora un insieme convesso. Infatti, siano X e Y due insiemi convessi, e A e B due punti appartenenti a ∩. Allora, siccome X è convesso e contiene sia A che B, contiene anche il segmento AB.
Qual è la definizione di funzione concava?
Definizione di funzione concava . Una funzione definita su un intervallo è una funzione concava (oppure funzione debolmente concava) sull’intervallo se, comunque si considerino due punti nell’intervallo , è verificata la condizione .
Cosa si dice convessa in matematica?
In matematica, una funzione a valori reali definita su un intervallo si dice convessa se il segmento che congiunge due qualsiasi punti del suo grafico si trova al di sopra del grafico stesso. Per esempio, sono funzioni convesse la funzione quadratica () = e la funzione esponenziale =.
Qual è il concetto di funzione concava?
Il concetto opposto a quello di funzione convessa è quello di funzione concava, ovvero di una funzione in cui il segmento che congiunge due qualsiasi punti del grafico si trovi al di sotto del grafico stesso. Una funzione () è concava se il suo opposto − è una funzione convessa.