Sommario
Qual è la definizione di integrale per le funzioni continue?
La definizione di integrale per le funzioni continue in un intervallo venne inizialmente formulata da Augustin-Louis Cauchy, che a partire dal lavoro di Mengoli, descrisse l’integrale utilizzando la definizione di limite. In seguito Bernhard Riemann propose la sua definizione, in modo da comprendere classi più estese di funzioni.
Qual è il valore dell’integrale della funzione?
Il valore dell’integrale della funzione calcolato sull’intervallo di integrazione è uguale all’area (con segno) del trapezoide, cioè il numero reale che esprime tale area orientata viene chiamato integrale Da ciò deriva la proprietà di monotonia degli integrali.
Cosa denota l’integrale indefinito della funzione?
denota l’integrale indefinito della funzione () rispetto a . La funzione () è detta anche in questo caso funzione integranda. In un certo senso (non formale), si può vedere l’integrale indefinito come “l’operazione inversa della derivata”.
Qual è la definizione di integrale?
La definizione di integrale per le funzioni continue in un intervallo venne inizialmente formulata da Augustin-Louis Cauchy, che a partire dal lavoro di Mengoli, descrisse l’integrale utilizzando la definizione di limite.
Cosa è integrale indefinito?
L’ integrale indefinito è un operatore che assegna ad una funzione integrabile, detta funzione integranda, un insieme di primitive. In questa lezione daremo la definizione di primitiva di una funzione (o antiderivata) e presenteremo la definizione di integrale indefinito.
Qual è l’equazione di continuità?
L’equazione di continuità garantisce che la quantità totale di carica contenuta all’interno della regione delimitata da una superficie chiusa ∂ cambi nel tempo in funzione della quantità di carica che entra o fuoriesce dalla superficie stessa, ovvero in funzione del flusso del campo attraverso la superficie ∂.
Qual è la condizione necessaria ai fini dell’integrabilità?
Una condizione sufficiente ai fini dell’integrabilità è che una funzione definita su un intervallo chiuso e limitato sia continua: una funzione continua definita su un compatto, e quindi continua uniformemente per il teorema di Heine-Cantor, è integrabile.
Qual è la derivabilità in senso complesso?
Una funzione derivabile in senso complesso è necessariamente differenziabile se interpretata in questo modo. Non è vero però l’opposto: la derivabilità in senso complesso è una condizione molto più restrittiva, che implica notevoli conseguenze sul comportamento della funzione.
Cosa è un operatore integrale?
In analisi matematica, l’ integrale è un operatore che, nel caso di una funzione di una sola variabile a valori reali non negativi, associa alla funzione l’ area sottesa dal suo grafico entro un dato intervallo {displaystyle [a,b]} nel dominio.