Sommario
Qual è la equazione differenziale del primo ordine?
Equazione differenziale del primo ordine E’ un’equazione differenziale che stabilisce una relazione tra – la variabile indipendente x, – la funzione incognita y= f(x), – e la derivata prima y’. Nella forma più generale:
Qual è il concetto di differenziale?
Il concetto di differenziale coincide con quello di derivata, essendo il differenziale di in un’applicazione lineare : → e quindi una funzione del tipo () = per qualche numero reale (tutte le applicazioni lineari → sono di tale forma fissata la base canonica).
Cosa è un’equazione differenziale?
In analisi matematica un’equazione differenziale è un’equazione che lega una funzione incognita alle sue derivate: se la funzione è di una sola variabile e l
Cosa è il differenziale di una funzione infinitesimale?
In matematica, in particolare nel calcolo infinitesimale, il differenziale di una funzione quantifica la variazione infinitesimale della funzione rispetto ad una
Qual è l’equazione differenziale implicita?
L’equazione differenziale implicita: I ( x , y ) d x + J ( x , y ) d y = 0 {\\displaystyle I(x,y)\\,\\mathrm {d} x+J(x,y)\\,\\mathrm {d} y=0} è un’equazione differenziale esatta se esiste una funzione differenziabile con continuità F {\\displaystyle F} , detta potenziale , tale che:
Qual è la soluzione generale di un’equazione di ordine n?
Una soluzione generale di un’equazione di ordine n è una soluzione contenente n costanti di integrazione indipendenti, mentre una soluzione particolare è ottenuta dalla soluzione generale conferendo un valore fissato alle costanti, solitamente in modo da soddisfare le condizioni iniziali o condizioni al contorno.
Cosa è un’equazione autonoma?
Un’equazione autonoma è un’equazione differenziale ordinaria del tipo: ′ = (()) dove è una funzione continua con derivata prima continua in tutto un intervallo ⊂, e che non dipende dalla variabile indipendente . Se è un vettore di si ha un sistema autonomo, ovvero un sistema di equazioni differenziali ordinarie autonome:
Qual è l’equazione differenziale di Bernoulli?
Nel 1695 Jacob Bernoulli si occupa dell’equazione oggi nota come equazione differenziale di Bernoulli: + = per la quale Leibniz, l’anno successivo, ottiene delle soluzioni semplificandola ad un’equazione lineare.
Quale equazione differenziale alle derivate parziali?
In analisi matematica, un’equazione differenziale alle derivate parziali, anche detta equazione alle derivate parziali (termine abbreviato in EDP o spesso in PDE, dall’acronimo inglese Partial Differential Equation), è un’equazione differenziale che coinvolge le derivate parziali di una funzione incognita di più variabili indipendenti.