Sommario
Quando la derivata seconda è maggiore di zero?
Se sia per x0−dx sia per x0+dx la curva è al di sotto della tangente, allora la concavità è negativa. In altre parola concavità verso l’alto equivale a dire derivata prima crescente e quindi derivata seconda maggiore di zero.
Come capire se una figura e concava o convessa?
La differenza tra angolo concavo e convesso sta principalmente nel prolungamento dei lati che definiscono l’angolo. Se il proseguimento di questi cade all’interno dell’angolo, allora è un angolo concavo, se invece i prolungamenti proseguono all’esterno dell’angolo, allora è un angolo convesso.
Cosa ci dice la derivata seconda?
Geometricamente la derivata prima è la pendenza della tangente a una curva; la derivata seconda misura quindi l’incremento della pendenza; se la pendenza diminuisce la curva pende sempre più verso il basso e quindi abbiamo concavità verso il basso (vedi figura a lato).
Come si definisce una funzione convessa?
In alcuni articoli la definizione di funzione convessa si basa su questo criterio, che però non è equivalente alla definizione oggi comunemente usata: Una funzione è convessa se e solo se ha derivate destra e sinistra definite su , crescenti, con − ′ ≤ + ′.
Qual è la convessità di una funzione?
Se una funzione é dotata di derivata prima e seconda in ogni punto di un intervallo aperto allora si ha: , allora è convessa in. , allora è concava in. Da questo ultimo teorema si ricava un metodo pratico per determinare la convessità ( concavità) di una funzione.
Cosa si dice convessa in matematica?
In matematica, una funzione a valori reali definita su un intervallo si dice convessa se il segmento che congiunge due qualsiasi punti del suo grafico si trova al di sopra del grafico stesso. Per esempio, sono funzioni convesse la funzione quadratica () = e la funzione esponenziale =.
Qual è la somma di funzioni convesse?
La somma di funzioni convesse è convessa; la somma di funzioni concave è concava . Se sono funzioni convesse su un intervallo allora la funzione somma . è una funzione convessa sull’intervallo . Attenzione: nulla si può dire a priori sulla differenza di funzioni convesse. Esistono funzioni convesse la cui differenza è convessa, ad esempio