Sommario
Quando non esiste la derivata di una funzione?
Punti di non derivabilità (punto angoloso, cuspide, flesso a tangente verticale) I punti di non derivabilità di una funzione sono i punti del dominio in cui non è definita la derivata prima della funzione, e possono essere di tre tipi: punto angoloso, punto di cuspide, punto di flesso a tangente verticale.
Perché fare la derivata prima?
La derivata prima della funzione V(t) permette di capire se il veicolo sta accelerando o decelerando in quel preciso momento. In questo caso, nell’istante t1 la funzione derivata V’ ha un’inclinazione positiva ossia sta crescendo. Questo ci permette di capire che in quel momento il veicolo sta accelerando.
Quando la derivata è infinita?
Questo significa che non esiste, o è infinito, il limite del rapporto incrementale per x tendente a x 0 x_0 x0. Questo può accadere per diversi motivi: La derivata destra e sinistra in x 0 x_0 x0 sono entrambe o +∞ o −∞ La derivata destra e sinistra in x 0 x_0 x0 sono infinito, ma sono discordi.
Quando la derivata è maggiore di zero?
Funzione crescente Una funzione f(x) continua in [a,b] e derivabile in (a,b) è crescente in [a,b] se la derivata prima f(x) è maggiore uguale a zero $$ f'(x) \ge 0 $$ per ogni x ∈ (a,b).
Qual è la derivata di una funzione?
Derivata di una funzione: definizione. La definizione di derivata, o derivata prima di una funzione in un punto, prevede di definire la derivata come limite del rapporto incrementale della funzione nel punto al tendere dell’incremento a zero. Considerando un generico punto, la derivata prima può essere altresì definita come una funzione.
Quali sono i punti di non derivabilità?
I punti di non derivabilità, quindi, sono quelli in cui la derivata destra e sinistra della funzione nel punto sono diverse fra loro, o uguali ma che tendono a infinito. Nei punti di non derivabilità, le tangenti al grafico possono essere due differenti oblique, una obliqua e una verticale, oppure è una retta verticale.
Qual è la definizione di derivata?
La definizione di derivata, o derivata prima di una funzione in un punto, prevede di definire la derivata come limite del rapporto incrementale della funzione nel